# The k-Cap Process on Geometric Random Graphs

### Mirabel Reid

Georgia Tech, Dept of Computer Science mreid48@gatech.edu

## Santosh Vempala

Georgia Tech, Dept of Computer Science vempala@cc.gatech.edu

### **Abstract**

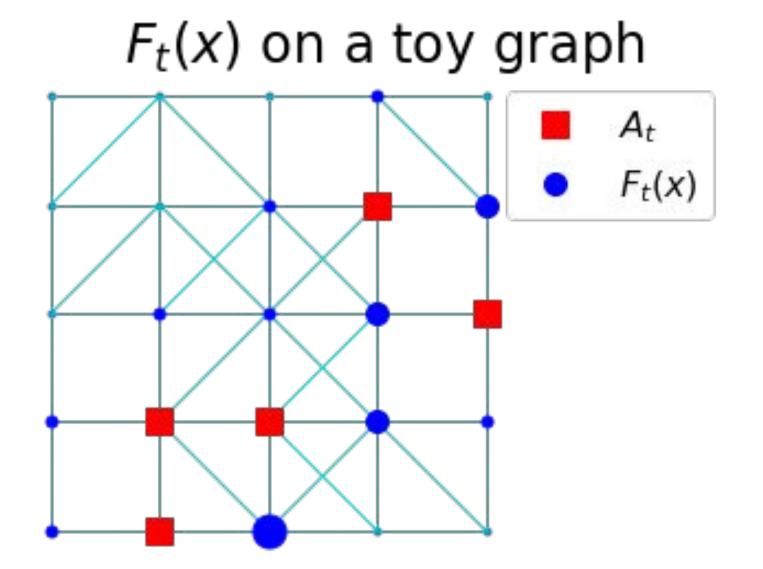
The *k*-cap (or *k*-winners-take-all) process on a graph works as follows: in each iteration, exactly *k* vertices of the graph are in the cap (i.e., winners); the next round winners are the vertices that have the highest total degree to the current winners.

This natural process is a simple model of firing activity in the brain. We study its convergence on geometric random graphs, revealing rather surprising behavior.

### Introduction

**Definition of the** k**-cap Process:** Given a graph G with n vertices  $\{1, 2, ..., n\}$ , at a timestep t > 0, let  $A_{t+1}$  be the set of k vertices with the **largest degree** in  $A_t$  (with ties broken randomly). We define the input  $F_t$  as a function of the edges  $e_{v,x}$  to x:

$$F_t(x) = \sum_{y \in A_t} e_{y,x}$$



### **Motivating Questions:**

- Does this process converge to a small subset of the vertices of G?
- If so, how quickly does it converge?
- How does the structure of  $A_t$  evolve as  $t \rightarrow \infty$ ?

### **Setting: Geometric Random Graphs**

- Embed each vertex in a hidden variable space.
- If two vertices are closer in the space, they are more likely to be connected by an edge

Assumption: edge probability is proportional to 1-D *Gaussian* function with parameters  $\sigma = 1/k$ ,  $n > k^{3+\epsilon}$ .

### **Discrete Process**

 $A_0$  chosen uniformly at random from [0, 1]. Poisson Clumping: Given uniform random points, some regions will have a higher density.

### Expected input and p(x) at t = 0

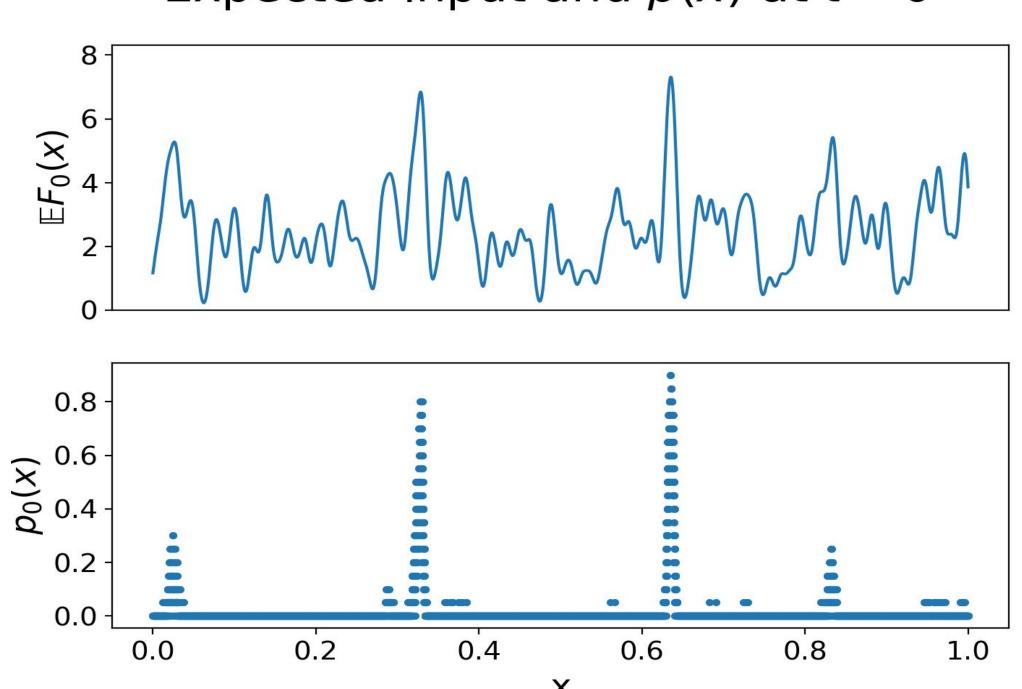


Fig:: Simulation results at t=0. (TOP) Expected degree to x from  $A_0$  (BOTTOM) Probability that x is in the top k.

**Theorem:** At step 1, WHP  $A_1$  can be covered by  $O(\ln k)$  intervals of size  $O(\sigma \ln \ln k)$ . **Analysis at t>1** 

### Expected input and p(x) at t = 4

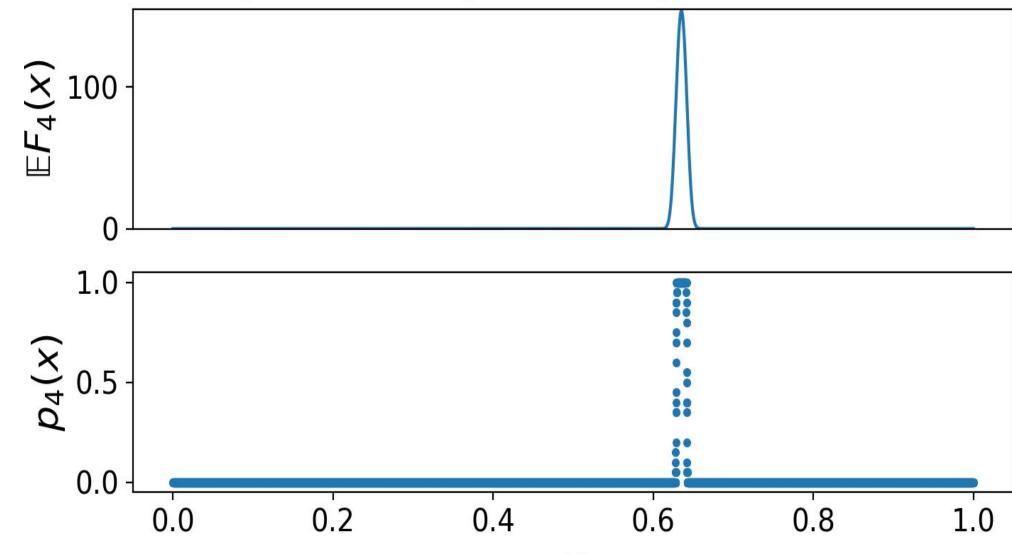
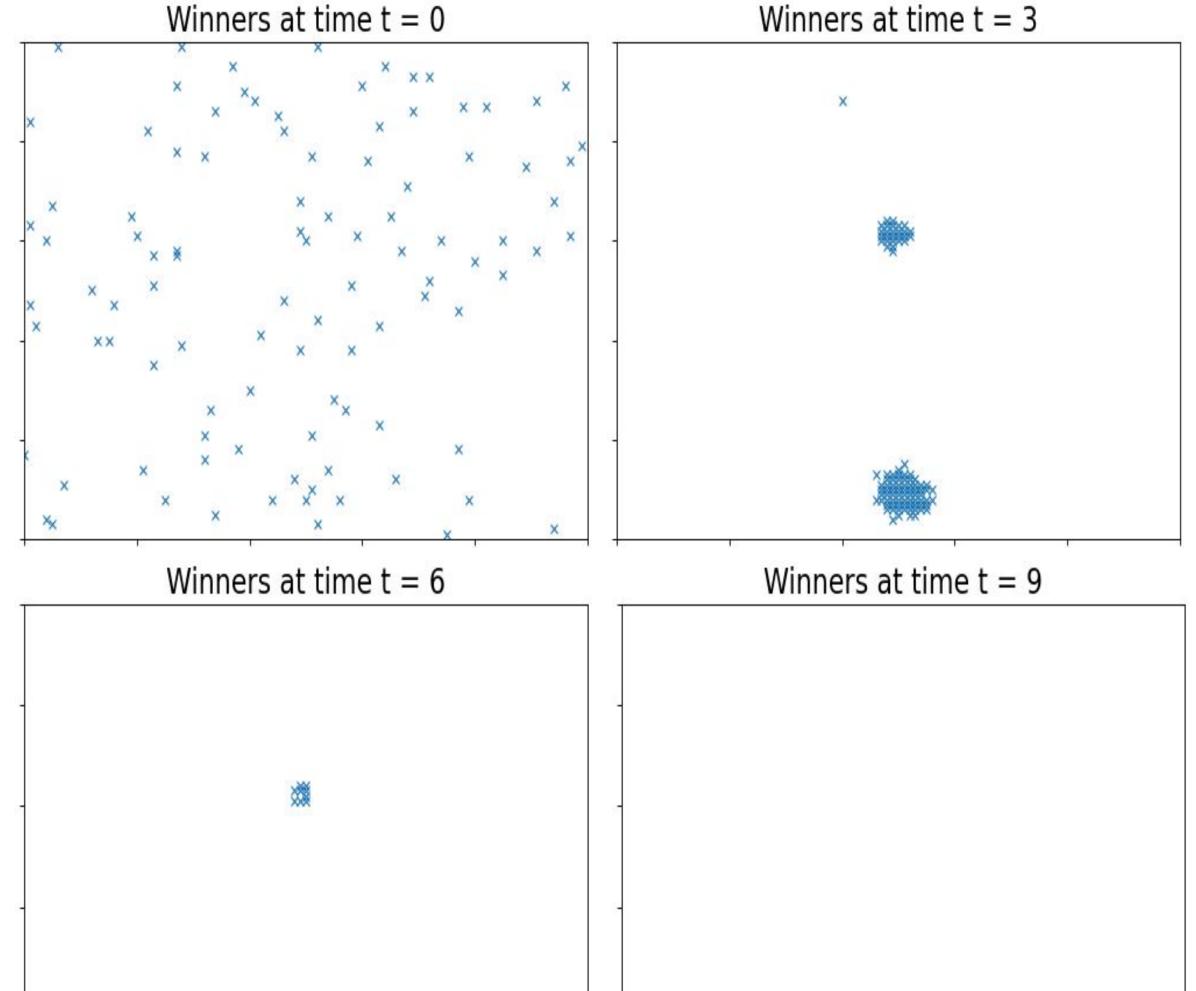


Fig: Simulation results at time t=4; showing the expected input to a vertex x and the probability that x is in the next firing set, plotted against the hidden variable.

**Theorem:** After polylog(k) steps, with high probability, the winners at t can be covered by a **single** interval of size  $O\left(\sigma\sqrt{\frac{\ln k}{k}}\right)$ 

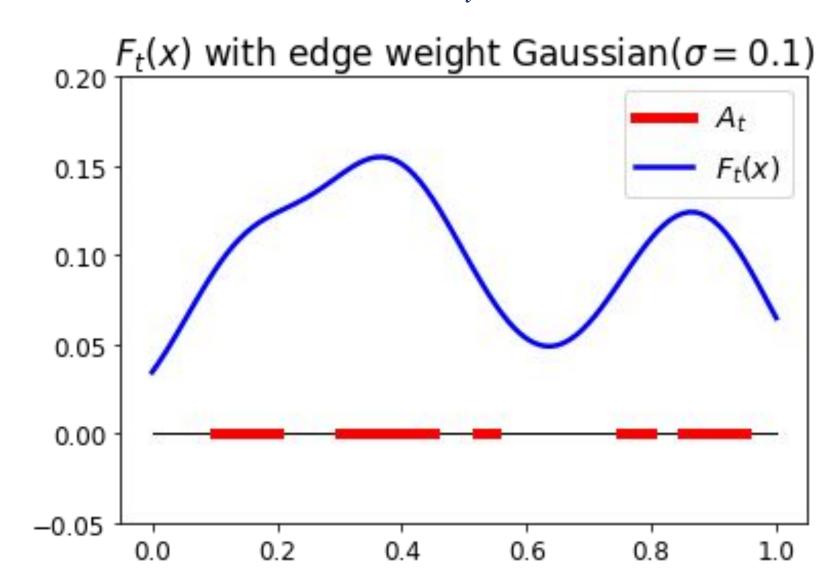
**Simulation** on a graph with hidden variables in 2D Parameters: n=10000 vertices, k=100 cap size



### Continuous Limit: a-cap Process

Consider how the process evolves as n (the number of vertices in the graph) approaches  $\infty$ .

Firing set:  $A_t \subset [0,1]$  is a union of intervals with measure  $\boldsymbol{a}$ . An example of  $F_t(x)$  is shown below:



**Definition:** Let  $\alpha = |A_0|$  and g be a real integrable function. For a finite union of intervals  $A_t$ , define:

$$F_t(x) = \int_0^1 A_t(y)g(y-x) dy$$

$$A_{t+1}(x) = \begin{cases} 0 & F_t(x) < C_{t+1} \\ 1 & F_t(x) \ge C_{t+1} \end{cases}$$

where  $C_{t+1} \in [0,1]$  is the solution to  $\int_0^1 A_{t+1}(x) dx = \alpha$ .

We showed this converges to a single interval of measure  $\boldsymbol{a}$ .

**Theorem 1.** Let  $A_0$  be a finite set of intervals on [0,1] and g be the edge probability function. For any even, nonnegative, integrable function  $g:[0,1] \to \Re_+$  with g'(x) < 0 for all x > 0, the  $\alpha$ -cap process converges to a single interval of width  $\alpha$ . Moreover, the number of steps to convergence is

$$O\left(\frac{\max_{[0,1]}|g'(x)|}{\min_{\left[\frac{\alpha}{8},1\right]}|g'(x)|}\right).$$

### **Motivation from the Brain**

### Graphs and the Brain:

- We model the brain as a random graph, where neurons are vertices and synapses are edges.
- Neuronal connections are not random;
  probability of connection depends on distance in space.
- Geometric graphs have been used to model graphs of neurons;
- Neuron position and characteristics can be represented with the hidden variable.

#### k-Cap and the Brain:

- The **firing pattern** of neurons behaves similarly to *k*-cap;
  - O Inhibition prevents too many neurons from firing at once.
- Plasticity strengthens connections between adjacent neurons.
- Adding plasticity to the *k*-cap process leads to convergence on directed random graphs.

#### **Future Directions:**

- Extend both continuous and discrete processes to higher dimensional hidden variable spaces.
- Other graph models e.g., convergence on G(n,p)

#### **References**

Reid, Mirabel, and Santosh S. Vempala. "The \$ k \$-Cap Process on Geometric Random Graphs." *arXiv preprint arXiv:2203.12680* (2022).

Bullmore, Ed, and Olaf Sporns. "Complex brain networks: graph theoretical analysis of structural and functional systems." Papadimitriou, Christos H., et al. "Brain computation by assemblies of neurons."

### Simulation code available at

https://github.com/mirabelreid/Assemblies-Simulations